
Week 6 - Monday

 What did we talk about last time?
 Started compression

 20 prisoners are scheduled to be executed tomorrow
 They will be lined up in a row facing the same direction, each

randomly wearing a white hat or a black hat
 Thus, one prisoner can see 19 prisoners, the next can see 18

prisoners, etc.
 Tomorrow, each prisoner, in order, starting with the last (who can see

the other 19) will be asked the color of his hat
 He can answer "white" or "black"
 If he answers correctly, he is spared, otherwise he is shot
 If anyone answers something other than "white" or "black," everyone

is killed immediately
 Since the prisoners were told the scenario a day a head of time, what

strategy can they develop to save the maximum number of
prisoners?

 Take the two lowest frequency letters y and z.
 Since they are neighbors in a full tree, we can stick them

together and treat them like a meta-letter yz with the sum of
their frequencies.

 Recursively repeat until everything is merged together.

 If S has two letters then
 Encode one with 0 and the other with 1

 Else
 Let y and z be the two lowest-frequency letters
 Form a new alphabet S' by deleting y and z and replacing them with a new

letter w of frequency fy + fz

 Recursively construct a prefix code for S' with tree T'
 Define a prefix code for S as follows:
▪ Start with T'
▪ Take the leaf labeled w and add two children below it labeled y and z

Letter Frequency
a 0.06
b 0.05
c 0.16
d 0.26
e 0.19
f 0.28

 Divide and conquer algorithms are ones in which we divide a
problem into parts and recursively solve each part

 Then, we do some work to combine the solutions to each part
into a final solution

 Divide and conquer algorithms are often simple
 However, their running time can be challenging to compute

because recursion is involved

 If there are two elements in the array or fewer then
 Make sure they're in order

 Else
 Divide list into two halves
 Recursively merge sort the two halves
 Merge the two sorted halves together into the final list

 The algorithm is simple, but recursive
 We'll use T(n) to describe the total running time recursively
 𝑇𝑇 𝑛𝑛 ≤ 𝑐𝑐, 𝑛𝑛 ≤ 2

 𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐, 𝑛𝑛 > 2
 Is it really the same constant c for both?
 No, but it's an inequality, so we just take the bigger one

 If we can, we want to turn the recursive version of T(n) into an
explicit (non-recursive) Big Oh bound

 Before we do, note that we could similarly have written:

𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇
𝑛𝑛
2

+ 𝑂𝑂(𝑛𝑛)
 Also, we can't guarantee that n is even
 A more accurate statement would be

𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇
𝑛𝑛
2

+ 𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐
 Usually, we ignore that issue and assume that n is a power of 2, evenly

divisible forever

 Each time, the recursion cuts
the work in half while doubling
the number of problems
 The total work at each level is

thus always cn
 To go from n to 2, we have to

cut the size in half (log2 n) – 1
times

cn

cn/2 cn/2

cn/4 cn/4cn/4 cn/4

cn

cn

cn

 We know that there's cn work at each level and approximately log2
n levels

 If we think that the running time O(n log n), we can guess that T(n)
≤ cn log2 n and substitute that in for T(n/2)

𝑇𝑇 𝑛𝑛 ≤ 2𝑇𝑇
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐

≤ 2𝑐𝑐
𝑛𝑛
2

log2
𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐
= 𝑐𝑐𝑛𝑛 (log2 𝑛𝑛 − 1) + 𝑐𝑐𝑐𝑐
= 𝑐𝑐𝑐𝑐 log2 𝑛𝑛 − 𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐

= 𝑐𝑐𝑐𝑐 log2 𝑛𝑛

 More recurrence relations

 Assignment 3 is due on Friday
 Read section 5.2
 Extra credit opportunities (0.5% each):
 Phadke research talk: 2/12 3-4 p.m. in Point 139
 Phadke teaching demo: 2/13 10-10:55 a.m. in Towers 112
 Hristov teaching demo: 2/19 11:30-12:25 a.m. in Point 113
 Hristov research talk: 2/19 4:30-5:30 p.m. in Point 139

	COMP 4500
	Last time
	Questions?
	Assignment 3
	Logical warmup: Revenge of the hats
	Finish Exam 1 Post-Mortem
	Data Compression
	Algorithm description
	Algorithm
	Practice: Make a prefix code tree
	Three-sentence Summary of Mergesort
	Divide and Conquer
	Divide and conquer
	Mergesort algorithm
	Time for mergesort
	Recursive running time
	Intuition about mergesort recursion
	Checking a solution
	Upcoming
	Next time…
	Reminders

